Interpreting Odds Ratios for Continuous Variables in Logistic Regression

  • This presentation presents a broad overview of methods for interpreting interactions in logistic regression.
  • The presentation is not about Stata. It uses Stata, but you gotta use something.
  • The methods shown are somewhat stat package independent. However, they can be easier or more difficult to implement depending on the stat package.
  • The presentation is not a step-by-step how-to manual that shows all of the code that was used to produce the results shown.
  • Each of the models used in the examples will have two research variables that are interacted and one continuous covariate (cv1) that is not part of the interaction.

Some Definitions

Odds

Showing that odds are ratios.

              odds = p/(1 - p)

Log Odds

Natural log of the odds, also known as a logit.

              log odds = logit = log(p/(1 - p))

Odds Ratio

Showing that odds ratios are actually ratios of ratios.

              odds1     p1/(1 - p1)      odds_ratio = ----- = -------------                   odds2     p2/(1 - p2)

Computing Odds Ratio from Logistic Regression Coefficient

              odds_ratio = exp(b)

Computing Probability from Logistic Regression Coefficients

              probability = exp(Xb)/(1 + exp(Xb))

Where Xb is the linear predictor.

About Logistic Regression

Logistic regression fits a maximum likelihood logit model. The model estimates conditional means in terms of logits (log odds). The logit model is a linear model in the log odds metric. Logistic regression results can be displayed as odds ratios or as probabilities. Probabilities are a nonlinear transformation of the log odds results.

In general, linear models have a number of advantages over nonlinear models and are easier to work with. For example, in linear models the slopes and/or differences in means do not change for differing values of a covariate. This is not necessarily the case for nonlinear models. The problem in logistic regression is that, even though the model is linear in log odds, many researchers feel that log odds are not a natural metric and are not easily interpreted.

Probability is a much more natural metric. However, the logit model is not linear when working in the probability metric. Thus, the predicted probabilities change as the values of a covariate change. In fact, the estimated probabilities depend on all variables in the model not just the variables in the interaction.

So what is a linear model? A linear model is linear in the betas (coefficients). By extension, a nonlinear model must be nonlinear in the betas. Below are three example of linear and nonlinear models.

First, is an example of a linear model and its graph.

Image lin1

Image int_linear

Next we have an example of a nonlinear model and its graph. In this case its an exponential growth model.

Image nlin2

Image int_exp

Lastly we have another nonlinear model. This one shows the nonlinear transformation of log odds to probabilities.

Image nlin3

Image int_nonlinear

Logistic Regression Transformations

This is an attempt to show the different types of transformations that can occur with logistic regression models.

                                  probability                              /                              /                               /                                /                                 /                                  /            odds ratios ----- log odds ------- odds              

Logistic interactions are a complex concept

Common wisdom suggests that interactions involves exploring differences in differences. If the differences are not different then there is no interaction. But in logistic regression interaction is a more complex concept. Researchers need to decide on how to conceptualize the interaction. Is the interaction to be conceptualized in terms of log odds (logits) or odds ratios or probability? This decision can make a big difference. An interaction that is significant in log odds may not be significant in terms of difference in differences for probability. Or vice versa.

Model 1: categorical by categorical interaction

Log odds metric — categorical by categorical interaction

Variables f and h are binary predictors, while cv1 is a continuous covariate.  The nolog option suppresses the display of the iteration log; it is used here simply to minimize the quantity of output.

                logit y01 f##h cv1, nolog                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =     106.10                                                   Prob > chi2     =     0.0000 Log likelihood =  -78.74193                       Pseudo R2       =     0.4025  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |   2.996118   .7521524     3.98   0.000     1.521926    4.470309          1.h |   2.390911   .6608498     3.62   0.000      1.09567    3.686153              |          f#h |         1 1  |  -2.047755   .8807989    -2.32   0.020    -3.774089   -.3214213              |          cv1 |    .196476   .0328518     5.98   0.000     .1320876    .2608644        _cons |  -11.86075   1.895828    -6.26   0.000     -15.5765   -8.144991 ------------------------------------------------------------------------------

The interaction term is clearly significant. We could manually compute the expected logits for each of the four cells in the model.

                                  f h cell 0 0 b[_cons]                                 = -11.86075 cell 0 1 b[_cons] + b[1.f] = -11.86075 + 2.390911 =  -9.469835 cell 1 0 b[_cons] + b[1.h] = -11.86075 + 2.996118 =  -8.864629 cell 1 1 b[_cons] + b[1.f] + b[1.h] + b[1.f#1.h]       = -11.86075 + 2.390911 + 2.996118 - 2.047755 =  -8.521473              

We can also use a cell-means model to obtain the expected logits for each cell when cv1=0.  The nocons option is used omit the constant term.  Because the constant is not included in the calculations, a coefficient for the reference group is calculated.

                logit y01 bn.f#bn.h cv1, nocons nolog                Logistic regression                               Number of obs   =        200                                                   Wald chi2(5)    =      50.48 Log likelihood =  -78.74193                       Prob > chi2     =     0.0000  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          f#h |         0 0  |  -11.86075   1.895828    -6.26   0.000     -15.5765   -8.144991         0 1  |  -9.469835   1.714828    -5.52   0.000    -12.83084   -6.108835         1 0  |  -8.864629   1.530269    -5.79   0.000     -11.8639   -5.865356         1 1  |  -8.521473   1.640705    -5.19   0.000    -11.73719    -5.30575              |          cv1 |    .196476   .0328518     5.98   0.000     .1320876    .2608644 ------------------------------------------------------------------------------

And here is what the expected logits look like in a 2×2 table.

  h=0   h=1
f=0 -11.86075 -9.469835
f=1 -8.8646295 -8.521473

We will look at the differences between h0 and h1 at each level of f (simple main effects) and also at the difference in differences.

                /* difference 1 at f = 0 */  lincom 0.f#0.h - 0.f#1.h                ( 1)  [y01]0bn.f#0bn.h - [y01]0bn.f#1.h = 0  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |  -2.390911   .6608498    -3.62   0.000    -3.686153    -1.09567 ------------------------------------------------------------------------------                /* difference 2 at f = 1 */  lincom 1.f#0.h - 1.f#1.h                ( 1)  [y01]1.f#0bn.h - [y01]1.f#1.h = 0  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |  -.3431562   .5507722    -0.62   0.533     -1.42265    .7363375 ------------------------------------------------------------------------------

Difference 1 suggests that h0 is significantly different from h1 at f = 0, While difference 2 does not show a significant difference at f = 1. These are tests of simple main effects just like we would do in OLS (ordinary least squares) regression. We will finish up this section by looking at the difference in differences.

                /* difference in differences */  lincom (0.f#0.h - 0.f#1.h)-(1.f#0.h - 1.f#1.h)                ( 1)  [y01]0bn.f#0bn.h - [y01]0bn.f#1.h - [y01]1.f#0bn.h + [y01]1.f#1.h = 0  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |  -2.047755   .8807989    -2.32   0.020    -3.774089   -.3214213 ------------------------------------------------------------------------------

The difference in differences is, of course, just another name for the interaction. For the log odds model the differences and the difference in differences are the same regardless of the value of the covariate. This constancy across different values of the covariate is one of the properties of linear models.

Odds ratio metric — categorical by categorical interaction

Let's look at a table of logistic regression coefficients along with the exponentiated coefficients, which some people call odds ratios.

---------------------------------------------------------- source  |  coefficient  exp(coef)    type of exp(coef) --------+------------------------------------------------- f       |   2.996118    20.007716    odds ratio h       |   2.390911    10.92345     odds ratio f#h     |  -2.047755     0.1290242   ratio of odds ratios cv1     |   0.196476     1.217106    odds ratio _cons   | -11.86075      7.062e-06   baseline odds ---------------------------------------------------------

Many people call all exponentiated logistic coefficients odds ratios. But as you can see from the table above, exponentiating the interaction is a ratio of ratios and the exponentiated constant is the baseline odds.

We can compute the odds ratios manually for each of the two levels of f from the values in the table above.

              odds ratio h1/h0 for f=0:  b[1.h]                            = 10.92345   odds ratio h1/h0 for f=1:  b[1.h]*b[f#h] = 10.92345*.1290242 = 1.4093894            

Please note that the computation of the odds ratio for f =1 involves multiplying coefficients for the odds ratio model above which implies that odds ratio models are multiplicative rather than additive.

The baseline odds when cv1 = zero is very small (7.06e-06) so for the remainder of of the computations we will estimate the odds while holding cv1 at 50.  The option noatlegend suppresses the display of the legend.

                margins, over(f h) at(cv1=50) expression(exp(xb())) noatlegend                Predictive margins                                Number of obs   =        200 Model VCE    : OIM  Expression   : exp(xb()) over         : f h  ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------         f h  |         0 0  |   .1304264   .0734908     1.77   0.076    -.0136129    .2744657         0 1  |   1.424706    .515989     2.76   0.006     .4133857    2.436025         1 0  |   2.609533   1.136545     2.30   0.022     .3819457    4.837121         1 1  |   3.677847   1.311463     2.80   0.005     1.107427    6.248267 ------------------------------------------------------------------------------

The option expression(exp(xb())) insures that we are looking at results in the odds ratio metric. The baseline odds are now .1304264 which is reasonable. We will compute the odds ratio for each level of f.

                odds ratio 1 at f=0: 1.424706/.1304264 = 10.923446  odds ratio 2 at f=1: 3.677847/2.609533 =  1.4093889              

So when f = 0 the odds of the outcome being one are 10.92 times greater for h1 then for h0. For f = 1 the ratio of the two odds is only 1.41. These odds ratios are the same as we computed manually earlier.

We can also compute the ratio of odds ratios and show that it reproduces the estimate for the interaction.

                ratio of odds ratios: (3.677847/2.609533)/(1.424706/.1304264) = .1290242              

The one nice thing that we can say about working in odds ratio metric is the odds ratios remain the same regardless of where we hold the covariate constant.

Probability metric — categorical by categorical interaction

We will begin by rerunning our logistic regression model to refresh our memories on the coefficients.

                logit y01 f##h cv1, nolog                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =     106.10                                                   Prob > chi2     =     0.0000 Log likelihood =  -78.74193                       Pseudo R2       =     0.4025  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |   2.996118   .7521524     3.98   0.000     1.521926    4.470309          1.h |   2.390911   .6608498     3.62   0.000      1.09567    3.686153              |          f#h |         1 1  |  -2.047755   .8807989    -2.32   0.020    -3.774089   -.3214213              |          cv1 |    .196476   .0328518     5.98   0.000     .1320876    .2608644        _cons |  -11.86075   1.895828    -6.26   0.000     -15.5765   -8.144991 ------------------------------------------------------------------------------              

Let's manually compute the probability of the outcome being one for the f = 0, h = 0 cell when cv1 is held at 50.

                Xb = b[_cons]  + 0*b[1.f]   + 0*b[1.h]   + 0*b{f#h}    + 50*b[cv1]     = -11.86075 + 0*2.996118 + 0*2.390911 + 0*-2.047755 + 50*.196476 = -2.03695  probability = exp(Xb)/(1+exp(Xb)) = exp(-2.03695)/(1+exp(-2.03695)) = .11537767              

We could repeat this for each of the other three cells but instead we we will obtain the expected probabilities for each cell while holding the covariate at 50 using the margins command.

                margins f#h, at(cv1=50)                Adjusted predictions                              Number of obs   =        200 Model VCE    : OIM  Expression   : Pr(y01), predict() at           : cv1             =          50  ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          f#h |         0 0  |    .115378   .0575106     2.01   0.045     .0026592    .2280968         0 1  |   .5875788   .0877652     6.69   0.000     .4155621    .7595955         1 0  |   .7229559   .0872338     8.29   0.000     .5519808    .8939309         1 1  |   .7862264   .0599327    13.12   0.000     .6687605    .9036924 ------------------------------------------------------------------------------

Here are the same results displayed as a table.

  h=0   h=1
f=0 .115378 .5875788
f=1 .7229559 .7862264

We would like to look at the differences in h for each level of f.

                h1 - h0 at f = 0: .5875788 - .115378  = .4722008 h1 - h0 at f = 1: .7862264 - .7229559 = .0632706              

We can also do this with a slight variation of the margins command and get estimates of the differences in probability along with standard errors and confidence intervals.

                margins f, dydx(h) at(cv1=50) post                Conditional marginal effects                      Number of obs   =        200 Model VCE    : OIM  Expression   : Pr(y01), predict() dy/dx w.r.t. : 0.h 1.h at           : cv1             =          50  ------------------------------------------------------------------------------              |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.h          |            f |           0  |   .4722008   .1035128     4.56   0.000     .2693195     .675082           1  |   .0632706   .1036697     0.61   0.542    -.1399183    .2664595 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.

These two differences are the probability analogs to the simple main effects from the log odds model. So, when the covariate is held at 50 there is a significant difference in h at f = 0 but not at f = 1.

Next, we will use lincom to compute the difference in differences when cv1 is held at 50.

                lincom [1.h]0.f-[1.h]1.f                ( 1)  [1.h]0bn.f - [1.h]1.f = 0  ------------------------------------------------------------------------------              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |   .4089302   .1482533     2.76   0.006      .118359    .6995014 ------------------------------------------------------------------------------

The p-value here is different form the p-value from the original logit model because in the probability metric the values of the covariate matter.

If we repeat the above process for values of cv1 from 20 to 70, we can produce a table of simple main effects and a graph of the difference in differences.

Table of Simple Main Effects for h at Two Levels of f for Various Values of cv1               |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------       cv1 f  |        20 0  |   .0035507   .0038256     0.93   0.353    -.0039472    .0110487        20 1  |    .002893   .0057719     0.50   0.616    -.0084197    .0142058        30 0  |   .0246805   .0188412     1.31   0.190    -.0122475    .0616086        30 1  |   .0186252   .0331697     0.56   0.574    -.0463863    .0836367        40 0  |   .1485222   .0656193     2.26   0.024     .0199107    .2771337        40 1  |   .0723494   .1167547     0.62   0.535    -.1564856    .3011843        50 0  |   .4722008   .1035128     4.56   0.000     .2693195     .675082        50 1  |   .0632706   .1036697     0.61   0.542    -.1399183    .2664595        60 0  |   .4284548    .137549     3.11   0.002     .1588636    .6980459        60 1  |   .0142654   .0255894     0.56   0.577    -.0358888    .0644197        70 0  |   .1173445    .076704     1.53   0.126    -.0329926    .2676816        70 1  |   .0021597   .0042758     0.51   0.613    -.0062207    .0105402              
Table of Difference in Differences for Various Values of cv1               |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------       cv1   |        20   |   .0006577   .0047463     0.14   0.890    -.0086449    .0099603        30   |   .0060553   .0306291     0.20   0.843    -.0539766    .0660872        40   |   .0761728   .1233778     0.62   0.537    -.1656432    .3179889        50   |   .4089302   .1482533     2.76   0.006      .118359    .6995014        60   |   .4141893   .1388141     2.98   0.003     .1421186      .68626        70   |   .1151848   .0753487     1.53   0.126    -.0324959    .2628654              

Image catcatgph

Clearly, the value of the covariate makes a huge difference in whether or not the simple main effects or the interactions are statistically significant when working in the probability metric.

Model 1a: Categorical by categorical interaction?

But wait, what if the model does not contain an interaction term? Consider the following model.

                logit y01 i.f i.h cv1                Logistic regression                               Number of obs   =        200                                                   LR chi2(3)      =     100.26                                                   Prob > chi2     =     0.0000 Log likelihood =   -81.6618                       Pseudo R2       =     0.3804  ------------------------------------------------------------------------------          y01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |    1.65172   .4229992     3.90   0.000     .8226566    2.480783          1.h |   1.256555   .4009757     3.13   0.002     .4706575    2.042453          cv1 |   .1806214   .0304036     5.94   0.000     .1210314    .2402113        _cons |  -10.26943   1.622842    -6.33   0.000    -13.45015   -7.088723 ------------------------------------------------------------------------------

We will manually compute the expected log odds for each of the four cells of the model.

              f h cell 0 0 b[_cons]                                 = -10.26943 cell 1 0 b[_cons] + b[1.f] = -10.26943 + 1.65172  = -8.61771 cell 0 1 b[_cons] + b[1.h] = -10.26943 + 1.256555 = -9.012875 cell 1 1 b[_cons] + b[1.f] + b[1.h]                   = -10.26943 + 1.65172 + 1.256555 = -7.361155

Next we will compute the differences for f=0 and f=1.

difference 1 at f = 0: -10.26943 - -8.6177  = -1.65173  difference 2 at f = 1: -9.012875 - -7.361155 = -1.65172

They are identical to within rounding error, showing that there is no interaction effect in the log odds model.

Next we will compute the expected probabilities for cv1 held at 50 along with the difference in differences.

                margins, over(f h) at(cv1=50) post                Predictive margins                                Number of obs   =        200  ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          f#h |         0 0  |   .2247204   .0670438     3.35   0.001     .0933171    .3561238         0 1  |   .5045471   .0798579     6.32   0.000     .3480285    .6610657         1 0  |   .6018917   .0866773     6.94   0.000     .4320073    .7717761         1 1  |   .8415636   .0455686    18.47   0.000     .7522509    .9308764 ------------------------------------------------------------------------------                lincom (_b[0.f#1.h]-_b[0.f#0.h])-(_b[1.f#1.h]-_b[1.f#0.h])                ( 1)  - 0bn.f#0bn.h + 0bn.f#1.h + 1.f#0bn.h - 1.f#1.h = 0  ------------------------------------------------------------------------------              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |   .0401547   .0364121     1.10   0.270    -.0312117     .111521 ------------------------------------------------------------------------------

The difference in differences is not very large. Let's try in again, this time holding cv1 at 60.

                margins, over(f h) at(cv1=60) post                Predictive margins                                Number of obs   =        200  ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          f#h |         0 0  |   .6382663   .1046912     6.10   0.000     .4330753    .8434572         0 1  |   .8610935   .0455552    18.90   0.000     .7718069    .9503802         1 0  |   .9019929   .0470231    19.18   0.000     .8098294    .9941565         1 1  |   .9700007   .0146765    66.09   0.000     .9412353     .998766 ------------------------------------------------------------------------------                lincom (_b[0.f#1.h]-_b[0.f#0.h])-(_b[1.f#1.h]-_b[1.f#0.h])                ( 1)  - 0bn.f#0bn.h + 0bn.f#1.h + 1.f#0bn.h - 1.f#1.h = 0  ------------------------------------------------------------------------------              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          (1) |   .1548195   .0634635     2.44   0.015     .0304334    .2792057 ------------------------------------------------------------------------------

This time the difference in differences is much larger. Let's make a graph similar to the one we did for the model with the interaction included.

Image catcatgph2

We see that, even without an interaction term in the model, the differences in differences (interactions?) can vary widely from negative to positive depending on the value of the covariate.

This leads us to the "Quote of the Day."

Quote of the day

Departures from additivity imply the presence of interaction types, but additivity does not imply the absence of interaction types.

Greenland & Rothman, 1998

Model 2: Categorical by continuous interaction

Log odds metric — categorical by continuous interaction

The dataset for the categorical by continuous interaction has one binary predictor (f), one continuous predictor (s) and a continuous covariate (cv1). Let's take a look at the logistic regression model.

                logit y f##c.s cv1                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =     114.41                                                   Prob > chi2     =     0.0000 Log likelihood = -74.587842                       Pseudo R2       =     0.4340  ------------------------------------------------------------------------------            y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |   9.983662    3.05269     3.27   0.001       4.0005    15.96682            s |   .1750686   .0470033     3.72   0.000     .0829438    .2671933              |        f#c.s |           1  |  -.1595233   .0570352    -2.80   0.005    -.2713103   -.0477363              |          cv1 |   .1877164   .0347888     5.40   0.000     .1195316    .2559013        _cons |  -19.00557   3.371064    -5.64   0.000    -25.61273   -12.39841 ------------------------------------------------------------------------------

The interaction term is significant indicating the the slopes for y on s are significantly different for each level of f. We can compute the slopes and intercepts manually as shown below.

                slope for f=0:  b[s] = .1750686 slope for f=1:  b[s] + b[f#c.s] = .1750686 -.1595233 = .0155453  intercept for f=0:  _cons = -19.00557 intercept for f=1:  _cons + b[1.f]= -19.00557 + 9.983662 = -9.021909              

Here are our two logistic regression equations in the log odds metric.

                -19.00557 + .1750686*s + 0*cv1 -9.021909 + .0155453*s + 0*cv1              

Now we can graph these two regression lines to get an idea of what is going on.

Image logoddscc

Because the logistic regress model is linear in log odds, the predicted slopes do not change with differing values of the covariate.

Probability metric — categorical by continuous interaction

We'll begin by rerunning the logistic regression model.

                logit y f##c.s cv1                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =     114.41                                                   Prob > chi2     =     0.0000 Log likelihood = -74.587842                       Pseudo R2       =     0.4340  ------------------------------------------------------------------------------            y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |   9.983662    3.05269     3.27   0.001       4.0005    15.96682            s |   .1750686   .0470033     3.72   0.000     .0829438    .2671933              |        f#c.s |           1  |  -.1595233   .0570352    -2.80   0.005    -.2713103   -.0477363              |          cv1 |   .1877164   .0347888     5.40   0.000     .1195316    .2559013        _cons |  -19.00557   3.371064    -5.64   0.000    -25.61273   -12.39841 ------------------------------------------------------------------------------

If we were so inclined we could compute all of the probabilities of interest using the basic probability formula.

                Prob = exp(Xb)/(1+exp(Xb))              

Here's an example of computing the probability when f = 0, s = 60, f#s = 0, and cv1 =40.

                Xb0 = -19.00557 + 0*9.983662 + 60*.1750686 + 0*-.1595233 + 40*.1877164 = -.992798  exp(Xb0)/(1+exp(Xb0)) = exp(-.992798)/(1+exp(-.992798)) = .27035977              

Now we will use f = 1, s = 60, f#s = 60, and cv1 =40.

                Xb1 = -19.00557 + 1*9.983662 + 60*.1750686 + 60*-.1595233 + 40*.1877164 = -.580534  exp(Xb1)/(1+exp(Xb1)) = exp(-.580534)/(1+exp(-.580534)) = .35880973              

We can also compute the difference in probabilities.

                exp(Xb1)/(1+exp(Xb1))           - exp(Xb0)/(1+exp(Xb0)) =   exp(-.580534)/(1+exp(-.580534)) - exp(-.992798)/(1+exp(-.992798)) = .08844995              

If we use something like Stata's margins command, we can get predicted probabilities along with standard errors and confidence intervals. Here is an example predicting the probability when s = 20 and cv1 = 40.

                margins f, at(s=20 cv1=40)                                Adjusted predictions                              Number of obs   =        200 Model VCE    : OIM  Expression   : Pr(y), predict()  ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------            f |           0  |   .0003368   .0005779     0.58   0.560    -.0007958    .0014695           1  |   .2310582   .1500289     1.54   0.124    -.0629931    .5251095 ------------------------------------------------------------------------------

Now can repeat this for various values of s running from 20 to 70, producing the table below.

Table of Predicted Probabilities of f for Various Values of s Holding cv1 at 40               |            Delta-method              |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------         s f  |        20 0  |   .0003368   .0005779     0.58   0.560    -.0007958    .0014695        20 1  |   .2310582   .1500289     1.54   0.124    -.0629931    .5251095        25 0  |    .000808   .0012067     0.67   0.503    -.0015571     .003173        25 1  |   .2451555   .1320954     1.86   0.063    -.0137469    .5040578        30 0  |   .0019367   .0024706     0.78   0.433    -.0029056    .0067789        30 1  |   .2598222   .1136085     2.29   0.022     .0371536    .4824908        35 0  |   .0046348   .0049337     0.94   0.348     -.005035    .0143047        35 1  |   .2750467   .0959104     2.87   0.004     .0870657    .4630276        40 0  |   .0110505   .0095531     1.16   0.247    -.0076733    .0297743        40 1  |   .2908127    .081642     3.56   0.000     .1307973    .4508282        45 0  |   .0261139   .0178944     1.46   0.144    -.0089585    .0611863        45 1  |   .3070997   .0752299     4.08   0.000     .1596518    .4545475        50 0  |   .0604557   .0329478     1.83   0.067    -.0041208    .1250322        50 1  |   .3238822   .0808248     4.01   0.000     .1654685    .4822959        55 0  |   .1337569   .0622149     2.15   0.032     .0118178    .2556959        55 1  |   .3411303   .0980782     3.48   0.001     .1489005    .5333601        60 0  |   .2703596   .1168105     2.31   0.021     .0414151     .499304        60 1  |   .3588096   .1233704     2.91   0.004      .117008    .6006111        65 0  |   .4706697    .180248     2.61   0.009       .11739    .8239493        65 1  |   .3768809   .1535731     2.45   0.014     .0758831    .6778787        70 0  |   .6808947   .1951477     3.49   0.000     .2984123    1.063377        70 1  |   .3953013   .1867987     2.12   0.034     .0291827    .7614199 ------------------------------------------------------------------------------

We will repeat this holding cv1 at 50 and then 60. We will then plot the probabilities for each of the three values of cv1.

Image cv1_40

Image cv1_50

Image cv1_60

Instead of looking at separate values for f0 and f1, we could compute the difference in probabilities. Here is an example using margins with the dydx option.

                margins, dydx(f) at(s=20 cv1=40)                Conditional marginal effects                      Number of obs   =        200 Model VCE    : OIM  Expression   : Pr(y), predict() dy/dx w.r.t. : 1.f at           : s               =          20                cv1             =          40  ------------------------------------------------------------------------------              |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------          1.f |   .2307214    .150045     1.54   0.124    -.0633615    .5248042 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.

Okay, let's repeat this for different values of s, producing the table below.

Table of Differences in Probability for Various Values of s Holding cv1 at 40               |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------           s  |          20  |   .2307214    .150045     1.54   0.124    -.0633615    .5248042           25  |   .2443475   .1321009     1.85   0.064    -.0145655    .5032605           30  |   .2578855   .1135271     2.27   0.023     .0353765    .4803946           35  |   .2704118   .0954463     2.83   0.005     .0833405    .4574832           40  |   .2797622   .0798258     3.50   0.000     .1233066    .4362179           45  |   .2809858   .0696338     4.04   0.000     .1445061    .4174655           50  |   .2634265   .0682395     3.86   0.000     .1296795    .3971735           55  |   .2073734   .0822883     2.52   0.012     .0460913    .3686556           60  |     .08845   .1291224     0.69   0.493    -.1646253    .3415252           65  |  -.0937888   .2006804    -0.47   0.640    -.4871151    .2995376           70  |  -.2855934   .2436296    -1.17   0.241    -.7630986    .1919118  ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.

Next, we need to repeat the process while holding cv1 at 50 and then 60. Then we can plot the differences in probabilities for the three values of cv1 on a single graph.

Image prob_dif

The Stata FAQ page, How can I understand a categorical by continuous interaction in logistic regression? shows an alternative method for graphing these difference in probability lines to include confidence intervals. Here are the graphs from that FAQ page.

                Image logitcc40-1                Image logitcc50-1                Image logitcc60-1              

Model 3: Continuous by continuous interaction

Log odds metric — continuous by continuous interaction

This time we have a dataset that has two continuous predictors (r & m) and a continuous covariate (cv1).

                logit y c.r##c.m cv1, nolog                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =      66.80                                                   Prob > chi2     =     0.0000 Log likelihood = -77.953857                       Pseudo R2       =     0.3000  ------------------------------------------------------------------------------            y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------            r |   .4342063   .1961642     2.21   0.027     .0497316    .8186809            m |   .5104617   .2011856     2.54   0.011     .1161452    .9047782              |      c.r#c.m |  -.0068144   .0033337    -2.04   0.041    -.0133483   -.0002805              |          cv1 |   .0309685   .0271748     1.14   0.254    -.0222931      .08423        _cons |  -34.09122   11.73402    -2.91   0.004    -57.08947   -11.09297 ------------------------------------------------------------------------------

The trick to interpreting continuous by continuous interactions is to fix one predictor at a given value and to vary the other predictor. Once again, since the log odds model is a linear model it really doesn't matter what value the covariate is held at; the slopes do not change. For convenience we will just hold cv1 at zero.

Here is an example manual computation of the slope of r holding m at 30.

                slope = b[r] + 30*b[r#m] = .43420626 + 30*(-.00681441) = .22977396              

Here is the same computation using Stata.

                margins, dydx(r) at(m=30) predict(xb)                Average marginal effects                          Number of obs   =        200 Model VCE    : OIM  Expression   : Linear prediction, predict(xb) dy/dx w.r.t. : r at           : m               =          30                cv1             =           0  ------------------------------------------------------------------------------              |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------            r |   .2297741   .0982943     2.34   0.019     .0371207    .4224274 ------------------------------------------------------------------------------

The table below shows the slope for r for various values of m running from 30 to 70. Since this is a linear model we do not have to hold cv1 at any particular value.

Table of Slopes for r for Various Values of m               |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------           m  |          30  |   .2297741   .0982943     2.34   0.019     .0371207    .4224274          40  |     .16163   .0670895     2.41   0.016     .0301369    .2931231          50  |   .0934859   .0395342     2.36   0.018     .0160004    .1709715          60  |   .0253419   .0291137     0.87   0.384    -.0317199    .0824037          70  |  -.0428022   .0485281    -0.88   0.378    -.1379156    .0523112 ------------------------------------------------------------------------------

We arbitrarily chose to vary m and look at the slope of r but we could have easily reversed the variables. Hopefully, your knowledge of the theory behind the model along with substantive knowledge will suggest which variable to manipulate.

Below is a graph of the slopes from the table above.

Image lconcon

This time we are going to move directly to the probability interpretation by-passing the odds ratio metric.

Probability metric — continuous by continuous interaction

We will rerun our model.

                logit y c.r##c.m cv1, nolog                Logistic regression                               Number of obs   =        200                                                   LR chi2(4)      =      66.80                                                   Prob > chi2     =     0.0000 Log likelihood = -77.953857                       Pseudo R2       =     0.3000  ------------------------------------------------------------------------------            y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------            r |   .4342063   .1961642     2.21   0.027     .0497316    .8186809            m |   .5104617   .2011856     2.54   0.011     .1161452    .9047782              |      c.r#c.m |  -.0068144   .0033337    -2.04   0.041    -.0133483   -.0002805              |          cv1 |   .0309685   .0271748     1.14   0.254    -.0222931      .08423        _cons |  -34.09122   11.73402    -2.91   0.004    -57.08947   -11.09297 ------------------------------------------------------------------------------

Next we will calculate the values of the covariate for the mean minus one standard deviation, the mean, and the mean plus one standard deviation.

                summarize cv1                Variable |       Obs        Mean    Std. Dev.       Min        Max -------------+--------------------------------------------------------          cv1 |       200      52.405    10.73579         26         71                mean cv1 - 1sd = 41.669207   mean cv1       = 52.405  mean cv1 + 1sd = 63.140793              

Here is an example of a computation for the slope of r in the probability metric for m = 30 hold cv1 at its mean minus 1 sd (41.669207).

                margins, dydx(r) at(m=30 cv1=41.669207)                Average marginal effects                          Number of obs   =        200 Model VCE    : OIM  Expression   : Pr(y), predict() dy/dx w.r.t. : r at           : m               =          30                cv1             =    41.66921  ------------------------------------------------------------------------------              |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------            r |   .0061133   .0065712     0.93   0.352     -.006766    .0189926 ------------------------------------------------------------------------------

We will now compute the slopes for r for differing values of m for each of the three values of cv1.

Table for Slope of r for Various Values of m holding cv1 at mean minus 1 sd                |            Delta-method              |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------           m  |          30  |   .0061133   .0065712     0.93   0.352     -.006766    .0189926          35  |    .006587   .0061377     1.07   0.283    -.0054427    .0186167          40  |   .0071815   .0056839     1.26   0.206    -.0039586    .0183217          45  |   .0078851   .0052656     1.50   0.134    -.0024354    .0182055          50  |   .0085235    .004981     1.71   0.087    -.0012391    .0182861          55  |   .0083341   .0049614     1.68   0.093    -.0013901    .0180583          60  |   .0052692   .0059747     0.88   0.378    -.0064411    .0169795          65  |   -.002175   .0090427    -0.24   0.810    -.0198984    .0155484          70  |  -.0091967   .0089699    -1.03   0.305    -.0267774    .0083839 ------------------------------------------------------------------------------  Table for Slope of r for Various Values of m holding cv1 at the mean  -------------+----------------------------------------------------------------           30 |   .0074917   .0069416     1.08   0.280    -.0061135    .0210969           35 |   .0081075   .0063953     1.27   0.205     -.004427    .0206421           40 |   .0088605   .0057648     1.54   0.124    -.0024384    .0201593           45 |    .009721   .0051157     1.90   0.057    -.0003056    .0197476           50 |   .0104242   .0046175     2.26   0.024     .0013739    .0194744           55 |     .00992   .0046688     2.12   0.034     .0007692    .0190708           60 |   .0058498    .006339     0.92   0.356    -.0065745    .0182741           65 |  -.0021432   .0088189    -0.24   0.808     -.019428    .0151416           70 |  -.0081533   .0075364    -1.08   0.279    -.0229243    .0066177 ------------------------------------------------------------------------------  Table for Slope of r for Various Values of m holding cv1 at mean plus 1 sd -------------+----------------------------------------------------------------           m  |           30 |   .0090189   .0073769     1.22   0.221    -.0054396    .0234774           35 |   .0097902   .0067546     1.45   0.147    -.0034485    .0230289           40 |   .0107094   .0060155     1.78   0.075    -.0010807    .0224994           45 |   .0117184   .0052384     2.24   0.025     .0014513    .0219854           50 |   .0124196   .0046088     2.69   0.007     .0033864    .0214527           55 |   .0114027    .004686     2.43   0.015     .0022182    .0205871           60 |    .006181   .0067253     0.92   0.358    -.0070003    .0193622           65 |  -.0020011   .0080879    -0.25   0.805    -.0178531    .0138509           70 |  -.0069432   .0060361    -1.15   0.250    -.0187739    .0048874

We will graph each of the three tables above.

Image logitconcon2-1

Image logitconcon3-1

Image logitconcon4-1

The bottom line

  • Just because the interaction term is significant in the log odds model, it doesn't mean that the probability difference in differences will be significant for values of the covariate of interest.
  • Paradoxically, even if the interaction term is not significant in the log odds model, the probability difference in differences may be significant for some values of the covariate.
  • In the probability metric the values of all the variables in the model matter.

References

Ai, C.R. and Norton E.C. 2003. Interaction terms in logit and probit models. Economics Letters 80(1): 123-129.

Greenland, S. and Rothman, K.J. 1998. Modern Epidemiology, 2nd Ed. Philadelphia: Lippincott Williams and Wilkins.

Mitchell, M.N. and Chen X. 2005. Visualizing main effects and interactions for binary logit model. Stata Journal 5(1): 64-82.

Norton, E.C., Wang, H., and Ai, C. 2004 Computing interaction effects and standard errors in logit and probit models. Stata Journal 4(2): 154-167.

Comma separated data files

Categorical by categorical: https://stats.idre.ucla.edu/wp-content/uploads/2016/02/concon2.csv

Categorical by continuous: https://stats.idre.ucla.edu/wp-content/uploads/2016/02/logitcatcon.csv

Continuous by continuous: https://stats.idre.ucla.edu/wp-content/uploads/2016/02/logitconcon.csv

leetope1969.blogspot.com

Source: https://stats.oarc.ucla.edu/stata/seminars/deciphering-interactions-in-logistic-regression/

0 Response to "Interpreting Odds Ratios for Continuous Variables in Logistic Regression"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel